skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Little, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Space heating is a necessity in Alaska; however, the use of heating fuels carries both economic and environmental costs. In the Fairbanks North Star Borough (FNSB), Alaska, most households utilize heating fuel oil as a primary source for home heating and firewood as a secondary source. In the FNSB, wood-burning devices are the principal source of fine particulate matter with a size of 2.5 microns or less, (PM2.5), but firewood is less expensive when compared to heating fuel oil. The FNSB has been designated as a nonattainment area for PM2.5, which has been linked to negative cardiopulmonary impacts and other adverse health consequences. Electric thermal storage heaters (ETSH) could help solve the PM2.5 problem by displacing firewood used for residential space heating. We use dichotomous choice contingent valuation (DC-CV) to estimate willingness to pay (WTP) for an ETSH program which would allow FNSB residents to offset 100 gallons of heating fuel oil annually. Certainty correction is used to control for the presence of hypothetical bias. We find median WTP is USD 33.98 without certainty correction and USD 9.75 with certainty correction. Our results indicate that implementation of a special ETSH electricity rate based on the WTP estimate may lead to broader adoption of ETSH for space heating, which could improve air quality, reduce fuel poverty, and reduce the carbon footprint of residential space heating. 
    more » « less
  2. Juneau, Alaska, kept COVID-19 deaths lower than in other similar jurisdictions. We argue that adaptive leadership—the early decisions and actions of Juneau’s leaders, effective communications, and emergent new collaborative structures—in the context of municipal ownership of key assets enabled Juneau’s success. The result of 61 interviews and follow-up research, this case study contributes a better understanding of which institutional design, communication, and collaborative factors mattered in responding to the pandemic. Adaptive leadership provides a better explanation for Juneau’s success than alternatives that focus on its isolation, home-rule status, and socio-economic structure. 
    more » « less
  3. null (Ed.)
    The late-season extreme fire activity in Southcentral Alaska during 2019 was highly unusual and consequential. Firefighting operations had to be extended by a month in 2019 due to the extreme conditions of hot summer temperature and prolonged drought. The ongoing fires created poor air quality in the region containing most of Alaska’s population, leading to substantial impacts to public health. Suppression costs totaled over $70 million for Southcentral Alaska. This study’s main goals are to place the 2019 season into historical context, provide an attribution analysis, and assess future changes in wildfire risk in the region. The primary tools are meteorological observations and climate model simulations from the NCAR CESM Large Ensemble (LENS). The 2019 fire season in Southcentral Alaska included the hottest and driest June–August season over the 1979–2019 period. The LENS simulation analysis suggests that the anthropogenic signal of increased fire risk had not yet emerged in 2019 because of the CESM’s internal variability, but that the anthropogenic signal will emerge by the 2040–2080 period. The effect of warming temperatures dominates the effect of enhanced precipitation in the trend towards increased fire risk. 
    more » « less